Model-Based Curve Evolution Technique for Image Segmentation
نویسندگان
چکیده
We propose a model-based curve evolution technique for segmentation of images containing known object types. In particitlar, motivated by the work of Leventon, Grimson, and Faugeras [4}, we derive a parametric model for an implicit representation of the segmenting curve by applying principal component analysis to a collection of signed distance representations of the training data. The parameters of this representation are then calculated to minimize an objective fnnction for segmentation. We found the resulting algorithm to be computationally efficient, able to handle multidimensional data, robnst to noise and initial cont01tr placements, while at the same time, avoiding the need for point correspondences dnring the training vhase of the algorithm. we demonstrate this technique by applying it to two medical applications.
منابع مشابه
Partial Differential Equations applied to Medical Image Segmentation
This paper presents an application of partial differential equations(PDEs) for the segmentation of abdominal and thoracic aortic in CTA datasets. An important challenge in reliably detecting aortic is the need to overcome problems associated with intensity inhomogeneities. Level sets are part of an important class of methods that utilize partial differential equations (PDEs) and have been exte...
متن کاملAn Improved Pixon-Based Approach for Image Segmentation
An improved pixon-based method is proposed in this paper for image segmentation. In thisapproach, a wavelet thresholding technique is initially applied on the image to reduce noise and toslightly smooth the image. This technique causes an image not to be oversegmented when the pixonbasedmethod is used. Indeed, the wavelet thresholding, as a pre-processing step, eliminates theunnecessary details...
متن کاملAssessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation
Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...
متن کاملNoisy Image Segmentation Based on a Level Set Evolution
In this paper, we propose a new hybrid model for active contour image segmentation, which is able to segment non-uniform noisy images efficiently. The model is a combination between the classical active contour based on the image gradient and the mean curvature moving technique. The efficiency is achieved by de-noising the image using log-Gabor filter then using a hybrid model to segment the no...
متن کاملA curve evolution-based variational approach to simultaneous image restoration and segmentation
In this paper, we introduce a novel approach for simultaneous restoration and segmentation of blurred, noisy images by approaching a variant of the Mumford-Shah functional from a curve evolution perspective. In particular, by viewing the active contour as the set of discontinuities in the image, we derive a gradient flow to minimize an extended Mumford-Shah functional where the known blurring f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001